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Executive Summary 
Hypothesis testing is a common practice for comparing two data samples with the intent of determining 
if the two source populations are different. Equivalence testing is an adjustment to this process to 
determine if the source populations are equivalent. Much of the process is the same, but there are some 
changes to the method and the theory. With equivalence testing there is also the added process of 
determining how close is close enough. 

Keywords: JMP, hypothesis testing, consumer risk, producer risk, equivalence acceptance criterion  

Introduction 
There are situations in test and evaluation (T&E) where the goal of the test is to show that nothing 
changed. We can imagine that a new type of battery is used as a power source or standard parts are 
made from a new, cheaper material or some other change has been introduced into a system. The goal 
of the testing is then to show that the new and slightly altered system performs just as well as the legacy 
system. A common method of comparing two data populations is to conduct a statistical hypothesis test 
on two representative samples. If the reader is unfamiliar with hypothesis testing we recommend the 
best practice Statistical Hypothesis Testing by Jennifer Kensler. Hypothesis testing can be used to show a 
difference between two data samples and, if the proper assumptions are met, apply the results to the 
parent populations with statistical inference. A tester will only conclude there is a difference when there 
is an abundance of evidence to show they are different. When faced with a small amount of evidence 
that they are different the tester will be unable to conclude that there is a difference and continue as if 
they are the same. Continuing as if the samples are the equivalent is not the same as proving that they 
are.  Equivalence tests are, “based on the desire to show that something is close enough to ideal to be 
acceptable” (Pardo, 2014). Equivalence testing uses the same approach as standard hypothesis testing 
but changes the null and alternate hypothesis so that the null is that the systems are different and the 
alternate is that they are the same. In short, for equivalence testing, the going-in presumption is that 
the populations are different; compelling evidence is necessary for the test team to conclude otherwise.  

Equivalence tests are commonly used in the pharmaceutical industry to show, for example, that a 
generic drug has equivalent efficacy as a name-brand drug. There are several potential applications in 
the DOD as well: showing that simulation results were equivalent to live test results or that an upgraded 
systems performs at least as well the legacy system. This best practice explores equivalence testing in 
depth, including how the change in premise affects the test process and the associated test risks and 
metrics. 

Review of Hypothesis Testing 
Hypothesis testing supports decision making through a process which allows us to compare a sample 
statistic against a specified value or compare two different sample statistics to each other in order to 
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draw conclusions between two samples. We can use statistical inference to extend that conclusion to 
the populations which produced the samples, provided that the assumptions for statistical inference 
have been met. Hypothesis testing is relied upon because we have the ability to set the required 
confidence prior to testing and to determine the number of samples we require to achieve our desired 
power. 

Hypothesis Testing Starts with a Theory 
Hypothesis tests are conducted for a purpose. The chain of events starts with a theory. For example, we 
may believe that a system under test (SUT) produces an output greater than some reference value. Or 
perhaps we believe that after making some alteration to the SUT that it now has an output that is 
different in some way – in this case, the theory in question is that when we change a factor level in the 
SUT, the response value will also change. We actually investigate a theory every time we conduct a 
designed experiment. 

Convert the Theory into Hypothesis Statements 
The next step in the process is to convert the theory into two competing claims, expressed as hypothesis 
statements, which are written in a way so that they cannot both be true. The null hypothesis (𝐻𝐻0) 
represents, “the status quo, conventional thinking, or historical performance” (Kensler, 2018). The claim 
to be tested is the alternate hypothesis (designated by 𝐻𝐻1 in this best practice but sometimes written as 
𝐻𝐻𝐴𝐴 in other documents). There are several possible hypotheses that can be made with regard to any 
measurable statistic. Three example hypothesis statements with a null and alternate hypothesis 
measured about the mean are shown in Figure 1.  

A. 𝐻𝐻𝑜𝑜: 𝜇𝜇2 = 𝜇𝜇1 
𝐻𝐻1: 𝜇𝜇2 ≠ 𝜇𝜇1 

B. 𝐻𝐻𝑜𝑜: 𝜇𝜇2 = 𝜇𝜇1 
𝐻𝐻1: 𝜇𝜇2 < 𝜇𝜇1 

C. 𝐻𝐻𝑜𝑜: 𝜇𝜇2 = 𝜇𝜇1 
𝐻𝐻1: 𝜇𝜇2 > 𝜇𝜇1 

   
The red area is an area is the extreme 
5% of the data. The lower and upper 
areas are each: 𝛼𝛼 2⁄ = 0.025 = 2.5% 

The red area is the lower 5% of the 
data 

The red area is an area is the upper 5% 
of the data 

Figure 1: Three sample distributions with 𝜶𝜶 shaded in red 

In Figure 1 the reader can see that example A is a two-sided hypothesis test, meaning that we do not 
care if 𝜇𝜇2 is greater than or less than 𝜇𝜇1, we only want to show the mean is different between these two 
populations. In the other two examples we seek to show that 𝜇𝜇2 is specifically less than or greater than 
𝜇𝜇1, respectively. Both examples B and C are one-sided tests. It most cases 𝐻𝐻0 has an equal sign so there 
is only value that makes it true. There are an infinite number of values that can make 𝐻𝐻1 true. In none of 
these examples (or any properly constructed pair of hypothesis statements) can 𝐻𝐻0 and 𝐻𝐻1 both be true. 
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There are two possible decisions. The tester can reject the null hypotheses and conclude that the 
alternative hypothesis is true or fail to reject the null hypothesis. The decision will be made based on the 
data collected and the accepted level of Type I risk. A more thorough investigation of these concepts is 
in the STAT COE best practice, Statistical Hypothesis Testing (Kensler, 2018). 

Type I Risk 
A Type I error is rejecting the null hypothesis when the null hypothesis is true. The probability that a 
Type I error is made is denoted as 𝛼𝛼 (alpha) and is also called the significance level. This risk probability 
is used for test planning and is always set a priori, that is prior to testing. It is also common to refer to 
the confidence of a test. Confidence is expressed as a percentage and is the compliment of significance: 
Confidence = (1 − 𝛼𝛼) × 100%. 
 

  Decision 
  Fail to Reject 𝐻𝐻0 Reject 𝐻𝐻0 

Tr
ut

h 

𝐻𝐻0 is True 
Confidence 

(1 − 𝛼𝛼) 
Correct Decision 

Type I Error 
(𝛼𝛼) 

Incorrect Decision 

𝐻𝐻0 is False 
Type II Error 

(𝛽𝛽) 
Incorrect Decision 

Power 
(1 − 𝛽𝛽) 

Correct Decision 
Figure 2: Hypothesis test decision matrix 

Type II Risk 
A Type II error is failing to reject the null hypothesis (thus proceeding as if it is true) when the null 
hypothesis is false. The probability of a Type II error is denoted by 𝛽𝛽. It is typical to discuss the power of 
a test during test planning. The power is the complement of 𝛽𝛽:  Power = (1 − 𝛽𝛽) × 100%. Like 𝛼𝛼, 
power is used for test planning. However, unlike a Type I error, we do not directly set 𝛽𝛽. Instead it is 
calculated based on the selected 𝛼𝛼, the assumed difference between the data collected in the null 
configuration of the SUT and the altered configuration of the SUT, and the sample size. The calculations 
are usually performed by software and are not covered in this best practice. 

The relationship between confidence and power can be further explained in one-sided upper-tail test 
shown in Figure 3. In this test 𝐻𝐻0:𝜇𝜇 = 0, 𝐻𝐻1:𝜇𝜇 > 0. The status quo data is represented by the blue 
curve on the left of both illustrations and is a standard normal distribution with 𝛼𝛼 = 0.05. To further 
highlight the 𝛼𝛼 the upper 5% of the area under the blue curve has been colored red. The green curve on 
the right of both illustrations is also normal with SD = 1, but 𝜇𝜇 = 3 in example A and 𝜇𝜇 = 2 in example 
B. The gray area is 𝛽𝛽, which makes the remaining area under the green curve (colored white and red) 
representative of the power. The reader can clearly see that Figure 3A has greater power. For further 
information on increasing power review the best practice Understanding the Signal to Noise Ratio in 
Design of Experiments (Ramert, 2019). 
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The data from the status quo SUT is under the blue 
curve and 𝛼𝛼 = 0.05. The green curve represents 
the altered SUT. In this example 𝛽𝛽 = 0.09 so the 
power is 91%.  

The data from the status quo SUT is under the blue 
curve and 𝛼𝛼 = 0.05. In this example 𝛽𝛽 = 0.36, 
which means that the power is only 64%. 

Figure 3: An illustration of confidence and power when comparing two distributions 

Examine the Data and Calculate the p-value 
The next step in the process is to look at the data collected from the SUT under the alternative 
hypothesis and determine if the hypothesized change occurred. A simple interpretation of this process is 
to look at the data and ask, “What is the probability that I get a result this extreme or more extreme 
when the SUT is in the null state?” This probability is called the p-value. The actual value is calculated 
with statistical tables or software and then compared to 𝛼𝛼. If the p-value is lower than 𝛼𝛼, we assume 
that the results are too extreme to happen under the null state with a high probability and we choose to 
reject 𝐻𝐻0 and conclude the alternative hypothesis must be true. Graphically we can draw a line at our 
test statistic and calculate the area to the edge of the distribution. That area is the p-value. If it less than 
𝛼𝛼, we reject 𝐻𝐻0. In Figure 4 there are two example p-values shown. Under the distribution shown with 
𝜇𝜇 = 0 and 𝛼𝛼 = 0.05. 

 
Figure 4: An illustration of p-values and their relationship to 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎 

When the p-value is equal to or greater than 𝛼𝛼 we fail to reject 𝐻𝐻0. This does not mean that the test 
proved that the null hypothesis is true or that the alternate hypothesis is false. It only signifies that the 
data gathered was not compelling enough for us to conclude that it came from the alternate state. 

A. B. 
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In hypothesis testing, an ambiguous data set or even a slightly convincing data set will not allow us to 
reject the null with any meaningful amount of confidence and we continue to define our SUT under the 
premise of the null hypothesis. With lack of clear evidence to the contrary, the presumption of “no 
difference” stands. However, this is not an ideal method for proving that system performance has not 
changed. In this context, we would want to fail to reject the null hypothesis; however, this is a weak 
conclusion. Failing to reject the null hypothesis just means that we did not have sufficient data to 
conclude the alternative hypothesis was true. To do this we need to revise our theory, reverse our 
hypotheses, and adjust our definitions. We need to presume the data sets come from different 
populations, unless the data convincingly show they are the same. 

Hypothesis Testing for Equivalence 
We now consider the situation where we want to show that two population parameters are equivalent. 
The theory which prompted the hypothesis testing has the reverse premise, and consequently many of 
the metrics now have a reverse meaning, but the underlying hypothesis testing procedure remains the 
same.  

An Equivalence Theory 
The test process is still initiated with a theory, but in equivalence testing we have only one basic 
premise: “Despite the changes made to the SUT, the output remains unchanged.” This is useful in the 
T&E for situations where there is no need for the SUT to improve performance, only sustain previously 
demonstrated performance but in some slightly altered configuration (e.g., an updated system that is 
cheaper or simpler to build, but performs the same as the original system). 

The Null and Alternate Hypothesis 
In equivalence testing, we maintain the same philosophy used in traditional hypothesis testing; the null 
hypothesis represents the status quo. However, that status quo belief is now that the system performs 
different when the inputs are different. We assume that if we change the system then we change its 
performance. In a physical system this could be because a part has been manufactured from a new 
material and is now lighter or heavier or more or less flexible. In a digital system this could be because a 
new algorithm in the code or perhaps a new coding language was used to compute some part of the 
output. In any case, something contributing to the SUT has changed, but testers desire to show that the 
performance has not changed. This desire means that the alternate hypothesis, still the theory that we 
want to show is correct, is that the SUT’s performance is the same. The pair of hypotheses are written 
as: 

𝐻𝐻𝑜𝑜: 𝜇𝜇1 ≠ 𝜇𝜇2 
𝐻𝐻1: 𝜇𝜇1 = 𝜇𝜇2 

Type I Risk 
In the case of equivalence testing we continue to use 𝛼𝛼 to indicate the probability of a Type I error, but 
the implications of that error have changed. Type I error is defined generically as the probability we 
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reject the null hypothesis when the null hypothesis is actually true. In the equivalence testing context, 
type I error rate is the probability we conclude the means are the same when they are actually different.   

In equivalence testing the meaning and mathematical principles behind 𝛼𝛼 and 𝛽𝛽 have not changed, but 
the affected party does change. In the scenario we have changed something in the manufacturing 
process with the desire that the product meets the same standards. Now our hypothesis statements 
are:   
                               𝐻𝐻𝑜𝑜: 𝜇𝜇1 ≠ 𝜇𝜇2: The product’s performance is different than it was before 
                               𝐻𝐻1: 𝜇𝜇1 = 𝜇𝜇2: The product’s performance is the same as it was before 

If a type I error is made the test team will reject the null even though it is true. That scenario is now a 
risk to the consumer, who expects to receive a product that performs just as well, but does not.  

Because of this change in the party affected some literature uses the term 𝛽𝛽 is used instead of 𝛼𝛼 to 
show denote Type I error in equivalence testing. In this document we continue to use 𝛼𝛼. 

Type II Risk 
Continuing in the quality control testing scenario, the probability of a Type II error is also called the 
“consumer’s risk” in traditional hypothesis testing. Recall that a type II error occurs when we fail to 
reject the null hypothesis when the alternative hypothesis is actually true. In the traditional hypothesis 
testing scenario, this would imply for example, that we miss a significant change in the system. If a Type 
II error is made then a substandard batch of the product will be erroneously determined to be within 
standard and delivered to the consumer. In equivalence testing, a Type II error is made the test team 
concludes that the system is different (null hypothesis) when it is truly equivalent (alternative 
hypothesis). That is a risk to the producer. 

The Equivalence Acceptance Criterion 
Whenever comparing two continuous results one can always conclude they are different if they are 
measured to a precise enough degree. At some point the difference becomes an academic difference 
but not a practical difference. This sensitivity level is controlled in equivalence testing by deriving the 
equivalence acceptance criterion, ∆ (delta). 

In some fields there may be industry standards to use as a guide for ∆. If not, the equivalence 
acceptance criterion is best developed from a consensus among stakeholders such as decision makers, 
system engineers, operators, and subject matter experts (SMEs). Deciding what difference in SUT 
performance is “good enough” and determining ∆ for the equivalence test is not a trivial task and 
adequate time should be allotted for this in the planning phase. The value of Δ should be based on how 
big a difference is practically important to consider the means not equivalent. Δ is similar to the 
difference to detect when we size a traditional designed experiment. Once ∆ is derived, the hypothesis 
can be stated as:  

               𝐻𝐻𝑜𝑜: |𝜇𝜇1 − 𝜇𝜇2| > ∆: The difference in means is greater than the equivalence acceptance criterion 
               𝐻𝐻1: |𝜇𝜇1 − 𝜇𝜇2| ≤ ∆: The difference in means is less than or equal to ∆ (the means are equivalent) 
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One-Sided Equivalence Testing 
A one-sided test is appropriate if the test team only cares if the response differs in one direction. For 
example, if a new rubber compound is used to make a tire with a mileage guarantee the producers may 
only care if the tire gets fewer miles of use. This is often called a test for noninferiority (Pardo, 2014). In 
these situations, the null hypothesis is often termed the “inferiority” hypothesis and the alternate is the 
“noninferiority” hypothesis. The following equation is used to compare the t-ratio to the critical value. 
Note that we no longer use 𝜇𝜇, because it represents the true population parameter, which we will likely 
never know. Instead we use 𝑦𝑦�, which denotes the sample mean. The critical value �𝑡𝑡𝛼𝛼,df� can be 
calculated with software or looked up in statistics tables. 

We reject 𝐻𝐻0 if:    
|𝑦𝑦�1 − 𝑦𝑦�2| + ∆

𝑆𝑆𝑆𝑆
> 𝑡𝑡𝛼𝛼,𝑛𝑛1+𝑛𝑛2−2 

The standard error (𝑆𝑆𝑆𝑆) of two different means can be calculated with the following equation where 𝑠𝑠2 
is the sample variance and 𝑛𝑛 is the sample size. 

𝑆𝑆𝑆𝑆 = �𝑠𝑠1
2

𝑛𝑛1
+
𝑠𝑠22

𝑛𝑛2
 

Two One-Sided Tests (TOST) 
In equivalence testing, there is no two-sided test. Instead, we conduct two noninferiority tests from 
both sides. We expand the hypotheses statements as shown in Figure 5: 

 

 𝐻𝐻𝑜𝑜: 𝜇𝜇1 − 𝜇𝜇2 > ∆ Null hypothesis expanded for the upper 
side test 

𝐻𝐻𝑜𝑜: |𝜇𝜇1 − 𝜇𝜇2| > ∆   
 𝐻𝐻𝑜𝑜:𝜇𝜇1 − 𝜇𝜇2 < −∆ Null hypothesis expanded for the lower 

side test 
    

𝐻𝐻1: |𝜇𝜇1 − 𝜇𝜇2| ≤ ∆  𝐻𝐻1:−∆≤ 𝜇𝜇1 − 𝜇𝜇2 ≤ ∆ The alternate hypothesis is expanded 

Figure 5: Expansion of hypothesis for two one-sided tests 

When the hypotheses are expanded to create the test statistics we get the following criterion. 

We reject 𝐻𝐻0 if:  
|𝑦𝑦�1 − 𝑦𝑦�2| + ∆

𝑆𝑆𝑆𝑆
> 𝑡𝑡𝛼𝛼,𝑛𝑛1+𝑛𝑛2−2    AND    

|𝑦𝑦�1 − 𝑦𝑦�2| − ∆
𝑆𝑆𝑆𝑆

< −𝑡𝑡𝛼𝛼,𝑛𝑛1+𝑛𝑛2−2 

Note that the two means are considered equivalent if, and only if, both null hypotheses are rejected. We 
must show that difference in the means is less than Δ and greater than −Δ to show that the means are 
equivalent; it cannot be true in just one direction. It is also prudent to point out that this is different 
than a traditional two-sided hypothesis test. When conducting a two-sided test with a Type I probability 
of 𝛼𝛼, we use 𝛼𝛼 2⁄  to compare to the p-value on each side. In this situation we use the full value of 𝛼𝛼 on 
both tests because they are both one-sided. 
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Example Problem 1  
Suppose we are analyzing the effectiveness of the door gunner in a helicopter. It is normal for the door 
gunner to use the M-249 but a unit wants to instead arm them with the M-4. The M-249 is a machine 
gun capable of a higher volume of fire, but it is heavier, harder to move, and more prone to jam. Can the 
M-4 provide equivalent combat power? Further suppose a test was conducted and the results were 
loaded into JMP statistical software as displayed in Figure 6. The test team determined that the M-4 was 
equivalent to the M-249 if the target damage score was within 20 points. 

 
Figure 6. Data for 20 trials of weapon effectiveness 

The reader can see the weapon used and the damage score for each of the 20 trials. This example is 
small enough that we can go through the calculations before we use JMP. Three basic statistics are 
calculated and shown in Table 1. 

Table 1. Statistics for TOST example 
Weapon Sample size Sample mean Sample variance 
M-249 𝑛𝑛1 = 10 𝑦𝑦�1 = 140.1 𝑠𝑠12 = 981.21 

M-4 𝑛𝑛2 = 10 𝑦𝑦�2 = 105.6 𝑠𝑠22 = 849.6 
 

Using the values calculated in Table 1 we can calculate the test statistic and critical value. First for the 
upper end of the curve. 
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𝑆𝑆𝑆𝑆 = �𝑠𝑠1
2

𝑛𝑛1
+
𝑠𝑠22

𝑛𝑛2
= �981.21

10
+

849.6
10

= √183.0811 ≈ 13.53 

We reject 𝐻𝐻0 if:    
|𝑦𝑦�1 − 𝑦𝑦�2| + ∆

𝑆𝑆𝑆𝑆
> 𝑡𝑡𝛼𝛼,𝑛𝑛1+𝑛𝑛2−2 

|140.1− 105.6| + 20
13.53

> 𝑡𝑡0.05,18 

|34.5| + 20
13.53

> 𝑡𝑡0.05,18 

4.03 > 𝑡𝑡0.05,18 

4.03 > 1.73
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯⎯� 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 

The statement is true so we reject 𝐻𝐻0 in the first one-sided test. Next, we conduct the second test. 

|𝑦𝑦�1 − 𝑦𝑦�2| − ∆
𝑆𝑆𝑆𝑆

< −𝑡𝑡𝛼𝛼,𝑛𝑛1+𝑛𝑛2−2 

|140.1− 105.6|− 20
13.53

< −𝑡𝑡0.05,18 

1.07 < −1.734
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯⎯� 𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆 

The statement is false and we fail to reject 𝐻𝐻0 in the second one-side test. Therefore, we also fail to 
reject the overall null hypothesis that the M-4 is not equivalent to the M-249. This is not a surprising 
outcome because our initial difference in means was 34.5.  

To conduct the same test in JMP we start with the data entered in Figure 6. To conduct the equivalence 
test, click on the Analyze tab at the top of the window and choose Fit Y by X from the drop down as 
shown in Figure 7. 

 
Figure 7. Screenshot from JMP while conducting TOST 

Figure 8 shows the window that will then open. When it does, the factor and response must be selected 
and then select the OK button. 



STAT COE-Report-12-2020 

 

 Page 11  
  

 
Figure 8. Screenshot from JMP while conducting TOST 

Once the OK button is selected JMP will produce a dot plot similar to Figure 9. A visual inspection of the 
dots shows us that the M-4 scores tend to be lower than the M-249 scores. 

 
Figure 9. Screenshot of dot plot from JMP while conducting TOST 

The final step to initiate the equivalence test is to select the red triangle in the upper left corner and 
select Equivalence Test from the drop-down menu as seen in Figure 10.  
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Figure 10. Screenshot of drop down menu from JMP 

After Equivalence Test is chosen the Equivalence Acceptance Criteria needs to be set in the window that 
opens. It will look like Figure 11. 

 
Figure 11. Screenshot of ∆ selection 

The test is run and a report will be displayed as Figure 12 shows. There are small differences in some of 
the values from the earlier calculations due to rounding errors, but the result is the same. In this case 
the upper threshold caused the TOST to fail. The diagram on the right displays that. The red vertical line 
is the actual difference in means. The two distributions from each one-sided test are centered on ∆ and 
−∆. The blue shaded area on the right hand t-distribution illustrates the upper threshold p-value. The 
blue area represents an answer to the question, “If the true difference is 20, or higher, what is the 
probability we calculate 34.65 or less?” The answer is 85.29%.  

 
Figure 12. Screenshot of the TOST report from JMP 
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To adjust the value of 𝛼𝛼 select the red triangle in the upper left again. The same drop-down menu will 
materialize but this time select Set 𝜶𝜶 Level as shown in Figure 13. Then choose a value provided or 
select Other to write in a different specific value. 

 
Figure 13. Screenshot of drop down menu 

Example Problem 2  
Another example is shown in Figures 14 and 15. In this example the comparison is between some real 
and simulated shots. This is a common scenario when attempting to validate modeling and simulation 
(M&S) data. Model validation is an ideal application for equivalence testing. The equivalence acceptance 
criterion for this example is 3. 

 
Figure 14. Screenshot of example 2 data in JMP 
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The results are shown in Figure 15. In this example we reject the null hypothesis that the mean miss 
distance is different between the model and live test data since both p-values for the one-sided tests are 
small (p-values < 0.05). We conclude that the means are equivalent, providing us with strong evidence 
that the model matches the live data overall. The calculated difference between means was 0.87, so it is 
not surprising that we reject the null hypothesis. 

 
Figure 15. Screenshot of results of second example 

If 𝛼𝛼 is changed to 𝛼𝛼 = 0.01 then the sensitivity is changed and the result is different. At 𝛼𝛼 = 0.01 we fail 
to reject the null hypothesis because the upper threshold p-value, which is 0.0234, does not change, but 
it is now greater than 𝛼𝛼. Note that it is not good test practice to change 𝛼𝛼 after the test-it is done here 
only to show the affect 𝛼𝛼 has on the result. 

Conclusion  
Equivalence testing is a powerful, but under-utilized STAT tool which allows the tester to determine the 
equivalence of two groups beyond a simple difference of means. The logic and fundamental process of 
hypothesis testing does not change when adjusting to equivalence testing, but the theory behind the 
hypothesis does. Little time in this best practice was spent on the selection of the equivalence 
acceptance criteria, but it is not a trivial task and must be selected through an informed and deliberate 
method. When conducting an equivalence test the tester must also determine if it is an inferiority test 
or TOST. It has proven to be a useful tool in the test process because it allows the testers to examine the 
difference between two SUTs and account for the variation within each one.  
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